
Exploits Explained

Exploits Explained:
Comprehensive Exploit Prevention

and Vendor Offerings
Exploits take advantage of weaknesses in legitimate software products like

Adobe Flash and Microsoft Office to infect computers for criminal purposes.

They’re commonly leveraged by cybercriminals in order to penetrate

organizations’ defenses. The objectives of these criminals are diverse: stealing

data or holding it for ransom, performing reconnaissance, or simply as a means

to deploy more traditional malware.

It’s common to find exploits used as part of cyber attacks: upwards of 90% of

reported data breaches find that an exploit is used at one or more points in the

attack chain. Including exploit prevention as part of a comprehensive lineup of

security defenses is clearly valuable.

Exploits have been around for more than 30 years, so it should come as no

surprise that almost every major security vendor can claim some level of exploit

prevention. However, the breadth and depth of that protection varies

significantly between vendors. For some, it’s a box to tick; for others, it’s a major

focal point. Read this paper to learn more about exploits and the various levels of

exploit prevention found in prominent security products.

Exploits Explained

The Exploit Industry: Crimeware as a Service

Thanks to exploit kits, malware authors don’t need to worry about how to find

bugs in Java or Silverlight or Flash; how to build those bugs into working

exploits; how to find insecure web servers to host the exploits; or how to entice

prospective victims to the booby-trapped web pages.

Likewise, exploit kit authors don’t have to worry

about writing full-blown malware; they don’t have to

run servers to keep track of infected computers or to

collect money from individual victims; they don’t

have to get involved in the exfiltration of stolen data

or selling that data.

With cybercrime now a multi-billion-dollar industry

that is projected to cause nearly $2 trillion in

damages by 2019, each aspect of an attack has

been industrialized. Criminals have the luxury of

being able to specialize in one or more parts of the

threat landscape in what’s become known jokingly

as CaaS – or “Crimeware as a Service.”

In this now-lucrative industry, exploit brokers have

emerged: they buy exploits from people who

discover them and sell them to people who want to

make use of them, whether government agencies or

nefarious hackers.

Buyers invariably keep their purposes to themselves. As Kevin Mitnick, founder

of Mitnick’s Absolute Zero Day Exploit Exchange, explained to Wired, “When we

have a client that wants a zero-day vulnerability for whatever reason, we don’t

ask, and in fact they wouldn’t tell us. Researchers find them, they sell them to us

for X, we sell them to clients for Y and make the margin in between.”

“When we have a

client that wants a

zero-day vulnerability

for whatever reason,

we don’t ask, and in

fact they wouldn’t tell

us. Researchers find

them, they sell them

to us for X, we sell

them to clients for Y

and make the margin

in between.”

- Kevin Mitnick

https://www.wired.com/2014/09/kevin-mitnick-selling-zero-day-exploits/

Exploits Explained

Exploit Mitigation Techniques

With more than 400,000 unique malware samples created each day and

thousands of new vulnerabilities discovered each year, the challenge of

preventing malicious attacks is daunting. This explosion of growth in malware

variants requires new and innovative approaches when it comes to defending

against cybercriminals.

A careful examination of the modern cybercrime industry shows an opportunity

for asymmetric defense. As it turns out, despite the seemingly endless parade of

new attacks, there are only about 20 or so techniques that can be used to

exploit software. So an approach that’s able to counteract this handful of exploit

techniques – instead of targeting each and every exploit – is extremely powerful.

What’s more: depending on the vulnerability, attackers often end up having to

chain a handful of exploit techniques together to get to the stage where they

can deliver malware. These techniques don’t change much from year to year:

perhaps one or two new tricks are added to the list of available techniques.

When evaluating major security products, the absence of significant exploit

technique mitigation can be surprising. And while some of the newer vendors

who claim to offer next-generation technology have broader support for exploit

mitigation, even here the coverage is spotty.

Below is a list of 23 exploit techniques that are used by cybercriminals and

nation-states. Mitigations for each technique will vary by vendor. It is important

to know that when a vendor claims to prevent exploits, most vendors simply

protect against a fraction of the commonly used exploit methods. Only Sophos

provides truly comprehensive exploit prevention.

Exploits Explained

Enforce Data Execution Prevention (DEP)

Data execution prevention (DEP) is a set of hardware and software technologies

that perform additional checks on memory to help prevent buffer overflows.

Without DEP, an attacker can attempt to exploit a software vulnerability by

jumping to malicious code (shellcode) at a memory location where attacker-

controlled data resides, such as the heap or stack. Without DEP, these regions

are normally marked as executable, so malicious code will be able to run.

DEP is an opt-in option for Windows XP and above that must be set by the

software vendor when building an application. Furthermore, attacks are

available for bypassing built-in DEP protection and, as such, dependence on the

operating system implementation is not recommended.

Vendors mitigating this exploit technique: Sophos Intercept X, Microsoft EMET,

Malware Bytes Anti-Exploit, Palo Alto Network Traps, Crowdstrike Falcon

Mandatory Address Space Layout Randomization (ASLR)

Some exploits work by targeting memory locations known to be associated with

particular processes. In older versions of Windows (including Windows XP), core

processes tended to be loaded into predictable memory locations upon system

startup. Address space layout randomization (ASLR) randomizes the memory

locations used by system files and other programs, making it much harder for

an attacker to correctly guess the location of a given process.

ASLR is only available on Windows Vista and above and, like DEP, must be set by

the software vendor when building an application. And like DEP, attacks are

available for bypassing built-in ASLR protection and, as such, dependence on

the operating system implementation is not recommended.

Vendors mitigating this exploit technique: Sophos Intercept X, Microsoft EMET,

Palo Alto Networks Traps, Crowdstrike Falcon

Exploits Explained

Bottom-up ASLR

If enabled, the mandatory ASLR found on a Windows machine only changes the

base address of applications once and then persists until the machine is

rebooted. Attackers can take advantage of this in order to enable the re-use of

discovered locations for applications that are started multiple times.

Bottom-up ASLR improves the entropy or randomness of mandatory ASLR. The

main advantage of bottom-up ASLR is that it changes the base address of

protected applications each time the application is started.

Vendors mitigating this exploit technique: Sophos Intercept X, Microsoft EMET,

Malwarebytes Anti-Exploit

Null Page (Null Dereference Protection)

Starting with Windows 8 and onwards, Microsoft denies programs the ability to

allocate and/or map the “NULL page” (memory residing at virtual address

0x00000000 in the address space). By doing this, Microsoft successfully

mitigates the direct exploitation of a whole class of vulnerabilities called “NULL

pointer dereference” vulnerabilities.

On Windows XP, Windows Vista, and Windows 7, the exploitation of such a flaw

would allow the attacker to execute code in the context of the kernel (under the

ring0 CPU privilege level), resulting in privilege escalation to one of the highest

levels. Such vulnerabilities give attackers access to virtually all parts of the

operating system.

Vendors supporting this mitigation technique: Sophos Intercept X, Microsoft

EMET

Heap Spray Allocation

A heap spray is a technique that does not actually exploit vulnerabilities but is

used to make a vulnerability easier to exploit. Using a technique called Heap

Exploits Explained

Feng Shui1 an attacker is able to reliably position intended data structures or

shellcode on the heap, thus facilitating a reliable exploitation of a software

vulnerability.

Vendors supporting this mitigation technique: Sophos Intercept X, Microsoft

EMET, Palo Alto Networks Traps, Crowdstrike Falcon

Dynamic Heap Spray

The dynamic heap spray mitigation analyzes the contents of memory

allocations to detect patterns that indicate heap sprays containing NOP sleds,

polymorphic NOP sleds, JavaScript arrays, ActionScript arrays, and other

suspicious sequences that are placed to facilitate exploit attacks.

Vendors supporting this mitigation technique: Sophos Intercept X, Palo Alto

Networks Traps

Stack Pivot

The stack of an application is a memory area that contains, among other things,

a list of memory address locations (so-called return addresses). These locations

contain the actual code that the processor needs to execute in the near future.

Stack pivoting is widely used by vulnerability exploits to bypass protections like

DEP, for example by chaining ROP gadgets in a return-oriented programming

attack. With stack pivoting, attacks can pivot from the real stack to a new fake

stack, which could be an attacker-controlled buffer such as the heap, from

which attackers can control the future flow of program execution.

Vendors supporting this mitigation technique: Sophos Intercept X, Cylance

PROTECT, Microsoft EMET, Malwarebytes Anti-Exploit, Palo Alto Networks Traps

1 https://cansecwest.com/slides/2014/The%20Art%20of%20Leaks%20-%20read%20version%20-

%20Yoyo.pdf

https://cansecwest.com/slides/2014/The%20Art%20of%20Leaks%20-%20read%20version%20-%20Yoyo.pdf
https://cansecwest.com/slides/2014/The%20Art%20of%20Leaks%20-%20read%20version%20-%20Yoyo.pdf

Exploits Explained

Stack Exec (MemProt)

Under normal circumstances, the stack contains data and addresses pointing to

code for the processor to execute in the near future. Using a stack buffer

overflow1, it is possible for attackers to overwrite the stack with arbitrary code. In

order to make this code run on the processor, the memory area of the stack

must be made executable to circumvent DEP. Once the stack-memory is

executable, it is very easy for an attacker to supply and run program code.

Vendors supporting this mitigation technique: Sophos Intercept X, Cylance

PROTECT, Microsoft EMET

Stack-based ROP Mitigations (Caller)

Control-flow integrity (CFI) technology is an approach to prevent attackers from

hijacking control-flow of internet-facing applications like web browsers,

Microsoft Office, and other productivity and media software. To defeat security

technologies like data execution prevention (DEP) and address space layout

randomization (ASLR), control-flow attacks are now common practice. These

attacks are invisible to antivirus, most “next-gen” products, and other cyber

defenses as there are no malicious files involved. Instead, the attack is

constructed at run time by combining short pieces of benign code that are part

of existing applications like Internet Explorer and Adobe Flash Player – a so-

called code-reuse or return-oriented programming (ROP) attack.

Vendors supporting this mitigation technique: Sophos Intercept X, Kaspersky

Endpoint Security, McAfee Endpoint Security, Microsoft EMET, Malwarebytes Anti-

Exploit, Palo Alto Networks Traps

1 https://en.wikipedia.org/wiki/Stack_buffer_overflow

https://en.wikipedia.org/wiki/Stack_buffer_overflow

Exploits Explained

Branch-based ROP Mitigations (Hardware Augmented)

ROP attacks can be achieved by leveraging an unused hardware feature in

mainstream Intel® processors (from 2008 and newer) to track code execution

and augment the analysis and detection of advanced exploit attacks at run time.

Employing read-only hardware-traced (branch) records has a significant

security benefit over software stack-based approaches. The branch information

that can be retrieved from these records not only identifies the target of the

branch, but also the source. So it actually shows where the change in control-

flow originated from. This specific information cannot be obtained with the

same level of confidence using a stack-based solution.

Branch information in the hardware-traced records cannot be manipulated;

there’s no way for it to be overwritten with controlled data by an attacker. Stack-

based solutions (like Microsoft EMET and Palo Alto Networks Traps) rely on stack

data, which is – especially in case of a ROP attack – under control of the

attacker, who in turn can mislead the defender. In contrast, the hardware-traced

data examined by Sophos Intercept X is more reliable and tamper resistant.

Sophos Intercept X will automatically employ Intel MSR hardware registers

when it detects an Intel® Core™ i3, i5, or i7 processor (CPU). If the endpoint does

not have a supported processor, Sophos Intercept X will automatically fall-back

on software-only stack-based control-flow integrity checks

Vendors supporting this mitigation technique: Sophos Intercept X

Structured Exception Handler Overwrite Protection (SEHOP)

An attacker can overwrite, with a controlled value, the handler pointer of an

exception record on the stack. Once an exception happens, the operating

system will walk the exception record chain and call all the handlers on each

exception record. Since the attacker controls one of the records, the operating

system will jump to wherever the attacker wants, giving the attacker control

over the flow of execution.

Exploits Explained

SEHOP is an opt-in option on Windows Vista and above and must be set by the

software vendor when building the application. Attacks are available for

bypassing built-in SEHOP protection and, as such, dependence on the operating

system implementation is not recommended.

Vendors supporting this mitigation technique: Sophos Intercept X, Symantec

Endpoint Protection, Microsoft EMET

Import Address Table Access Filtering (IAF)

An attacker eventually needs the addresses of specific system functions (e.g.

kernel32!VirtualProtect) to be able to perform malicious activities. These

addresses can be retrieved from different sources, one of which is the import

address table (IAT) of a loaded module. The IAT is used as a lookup table when

an application calls a function in a different module. Because a compiled

program cannot know the memory location of the libraries it depends upon, an

indirect jump is required whenever an API call is made. As the dynamic linker

loads modules and joins them together, it writes actual addresses into the IAT

slots so that they point to the memory locations of the corresponding library

functions.

Vendors supporting this mitigation technique: Sophos Intercept X, Microsoft

EMET

Load Library

Attackers can attempt to load malicious libraries by placing them on UNC paths.

Monitoring of all calls to the LoadLibrary API can be used to prevent this type of

library loading.

Vendors supporting this mitigation technique: Sophos Intercept X, Microsoft

EMET, Malwarebytes Anti-Exploit, Palo Alto Networks Traps.

Reflective DLL Injection

Normally when you load a DLL in Windows, you call the API function LoadLibrary.

LoadLibrary takes the file path of a DLL as input and loads it into memory.

Exploits Explained

Reflective DLL loading refers to loading a DLL from memory rather than from

disk. Windows doesn’t have a LoadLibrary function that supports this, so to get

this functionality you have to write your own. One benefit to writing your own

function is that you can omit some of the things Windows normally does, such

as registering the DLL as a loaded module in the process, which makes the

reflective loader sneakier when being investigated. Meterpreter is an example of

a tool that uses reflective loading to hide itself. Mitigation is performed by

analyzing if a DLL is reflectively loaded inside memory.

Vendors supporting this mitigation technique: Sophos Intercept X, Palo Alto

Networks Traps

Shellcode

A shell code is a piece of code used as the payload in an exploit. The shell code

will start a command shell that the attacker controls. Delivery and execution of

the shell code can take many forms, and detecting the adversarial deployment

of shell code involves multiple techniques to address things like fragmented

shell code, encrypted payloads, and null free encoding.

Vendors supporting this mitigation technique: Sophos Intercept X

VBScript God Mode

On Windows, VBScript can be used in browsers or the local shell. When used in

the browser, the abilities of VBScript are restricted for security reasons. This

restriction is controlled by the safemode flag. If this flag is modified, VBScript in

HTML can do everything as though it’s in the local shell. Consequently, attackers

can easily write malicious code in VBScript. Manipulating the safemode flag on

VBScript in the web browser is known as God Mode1.

As an example, an attacker can modify the safemode flag value by leveraging

the CVE-2014-6332 vulnerability2, a bug caused by improper handling while

resizing an array in the Internet Explorer VBScript engine. In God Mode, arbitrary

1 https://en.wikipedia.org/wiki/Glossary_of_video_game_terms#God_mode
2 https://www.rapid7.com/db/modules/exploit/windows/browser/ms14_064_ole_code_execution

https://en.wikipedia.org/wiki/Glossary_of_video_game_terms#God_mode
https://www.rapid7.com/db/modules/exploit/windows/browser/ms14_064_ole_code_execution

Exploits Explained

code written in VBScript can break out of the browser sandbox. Thanks to God

Mode, data execution prevention (DEP), address space layout randomization

(ASLR), and control-flow guard (CFG) protections are not in play.

Vendors supporting this mitigation technique: Sophos Intercept X, Microsoft

EMET, Malwarebytes Anti-Exploit

WoW64

Microsoft provides backward-compatibility for 32-bit software on 64-bit editions

of Windows through the “Windows on Windows” (WoW) layer. Aspects of the

WoW implementation provide interesting avenues for attackers to complicate

dynamic analysis, binary unpacking, and to bypass exploit mitigations.

The behavior of a 32-bit application under the WoW64 environment is different

in many ways from a true 32-bit system. The ability to switch between

execution modes at runtime can provide an attacker methods for exploitation,

obfuscation, and anti-emulation such as:

• Additional ROP gadgets not present in 32-bit code
• Mixed execution mode payload encoders
• Execution environment features that may render mitigations less

effective
• Bypassing hooks inserted by security software, only in 32-bit user space

Most endpoint protection software will only hook sensitive API functions in the

32-bit user memory space if a process is running under WoW64. If an attacker is

able to switch to 64-bit mode, access is gained to unhooked 64-bit versions of

the sensitive API functions that are hooked in 32-bit mode.

On 64-bit editions of Windows, Sophos Intercept X prohibits the program code

from directly switching from 32-bit to 64-bit mode (e.g. using ROP), while still

enabling the WoW64 layer to perform this transition.

Exploits Explained

For more information about abusing WoW64, see research from Duo Security:

WoW64 and So Can You1 and Mitigating Wow64 Exploit Attacks2.

Vendors supporting this mitigation technique: Sophos Intercept X

Syscall

Malicious access to critical system functions in the kernel, in an attempt to

bypass hooked Windows APIs, evade sandbox analysis and most protection

software.

Most endpoint security products use user-mode hooks to intercept and monitor

sensitive API calls. In order to bypass these hooks, an attacker can take

advantage of the fact that:

• Not all API functions are hooked; only sensitive functions
• The stubs that are used to call kernel functions are very similar; only the

function index is unique

For more information about abusing syscalls, see the BreakDev.org blog entry

titled Defeating Antivirus Real-time Protection From The Inside3.

Vendors supporting this mitigation technique: Sophos Intercept X

Hollow Process

Process hollowing is a technique in which a legitimate process is loaded on the

system solely to act as a container for hostile code; for example, svchost.exe

and explorer.exe. At launch, the legitimate code is deallocated and replaced with

malicious code, after which the process starts executing the malicious code.

The advantage is that this helps the process hide amongst normal processes.

Vendors supporting this mitigation technique: Sophos Intercept X, Palo Alto

Networks Traps

1 https://duo.com/blog/wow64-and-so-can-you
2 https://hitmanpro.wordpress.com/2015/11/10/mitigating-wow64-exploit-attacks

3 https://breakdev.org/defeating-antivirus-real-time-protection-from-the-inside/

https://duo.com/blog/wow64-and-so-can-you
https://hitmanpro.wordpress.com/2015/11/10/mitigating-wow64-exploit-attacks
https://breakdev.org/defeating-antivirus-real-time-protection-from-the-inside/

Exploits Explained

DLL Hijacking

Due to a vulnerability commonly known as DLL hijacking, DLL spoofing, DLL

preloading, or binary planting, many programs will load and execute a malicious

DLL contained in the same folder as a data file opened by these programs.

Vendors supporting this mitigation technique: Sophos Intercept X, Palo Alto

Networks Traps

Application Lockdown

In the event an attacker successfully exploits and bypasses all memory and

code mitigations, Sophos Intercept X limits an attacker’s abilities. This feature,

called Application Lockdown, aims to prevent attackers from introducing

unwanted code.

Application Lockdown stops attacks that do not typically rely on software bugs

in applications. Such an attack could be the use of a crafted (malicious) macro

in an office document attached to a (spear) phishing email, for example. Macros

in documents are potentially dangerous as they are created in the Visual Basic

for Applications (VBA) programming language, which includes the ability to

download and run binaries from the web and also allows the use of PowerShell

and other trusted applications.

This unexpected feature (or logic-flaw exploit) offers attackers an obvious

advantage as they do not need to exploit a software bug or find a way to bypass

code and memory defenses in order to infect computers. They simply abuse

standard functionality offered by a widely-used trusted application and only

need to use social engineering to persuade the victim to open the specially

crafted document.

Without the need to maintain a blacklist of folders, Sophos Intercept X will

automatically terminate a protected application based on its behavior; for

example, when an office application is leveraged to launch PowerShell, access

the WMI, run a macro to install arbitrary code or manipulate critical system

Exploits Explained

areas, Sophos Intercept X will block the malicious action – even when the attack

doesn’t spawn a child process.

Vendors supporting this mitigation technique: Sophos Intercept X, Malwarebytes

Anti Exploit, Palo Alto Networks Traps

Java Lockdown

Java applications have access to powerful and useful tools that can be

leveraged for attacks, such as the ability to write to disk and update the registry.

Vendors supporting this mitigation technique: Sophos Intercept X, Malwarebytes

Anti Exploit, Palo Alto Networks Traps

Squiblydoo AppLocker Bypass

Similar to other whitelist defeating attacks, Squibydoo leverages operating

system capabilities to run arbitrary scripts even on machines in full lockdown

where only authorized scripts are intended to be run.

Vendors supporting this mitigation technique: Sophos Intercept X

Exploits Explained

Comparison

The following is an overview of exploit mitigations available in various security

products, composed from datasheets, manuals, and product observations.

Memory Mitigations

So
ph

os
 In

te
rc

ep
t X

ES
ET

En

dp
oi

nt
 S

ec
ur

ity

Ka
sp

er
sk

y
En

dp
oi

nt
 S

ec
ur

ity

M
cA

fe
e

En
dp

oi
nt

 S
ec

ur
ity

Sy

m
an

te
c

En
dp

oi
nt

 P
ro

te
ct

io
n

Tr
en

d
M

ic
ro

O

ffi
ce

Sc
an

W

eb
ro

ot

En
dp

oi
nt

 P
ro

te
ct

io
n

Cy
la

nc
eP

RO
TE

CT

M
ic

ro
so

ft
EM

ET

M
al

w
ar

eb
yt

es

An
ti-

Ex
pl

oi
t

Pa
lo

 A
lto

 N
et

w
or

ks

Tr
ap

s
Cr

ow
dS

tr
ik

e
Fa

lc
on

Enforce Data Execution Prevention
(DEP)

Prevents abuse of buffer overflows
• • • • • •

Mandatory Address Space Layout
Randomization (ASLR)
Prevents predictable code locations

• •1 • •1
Bottom Up ASLR
Improved code location

randomization
• • •

Null Page (Null Dereference
Protection)
Stops exploits that jump via page 0

• • •
Heap Spray Allocation
Pre-allocated common memory areas

to block example attacks
• • • • • •

Dynamic Heap Spray

Stops attacks that spray suspicious

sequences on the heap
• •2

1 Based on ASLR functionality offered by Windows, available only in Windows Vista and newer versions of
Windows
2 32-bit NOP sled and Polymorphic NOP sled only; no Flash Vector heap spray detection and not on 64-
bit versions of Windows

Exploits Explained

Code Mitigations

So
ph

os

In
te

rc
ep

t X

ES
ET

En

dp
oi

nt
 S

ec
ur

ity

Ka
sp

er
sk

y
En

dp
oi

nt
 S

ec
ur

ity

M
cA

fe
e

En
dp

oi
nt

 S
ec

ur
ity

Sy

m
an

te
c

En
dp

oi
nt

 P
ro

te
ct

io
n

Tr
en

d
M

ic
ro

O

ffi
ce

Sc
an

W

eb
ro

ot

En
dp

oi
nt

 P
ro

te
ct

io
n

Cy
la

nc
eP

RO
TE

CT

M
ic

ro
so

ft
EM

ET

M
al

w
ar

eb
yt

es

An
ti-

Ex
pl

oi
t

Pa
lo

 A
lto

 N
et

w
or

ks

Tr
ap

s
Cr

ow
dS

tr
ik

e
Fa

lc
on

Stack Pivot

Stops abuse of the stack pointer • • • • • • •
Stack Exec (MemProt)
Stops attacker’ code on the stack • • • •
Stack-based ROP Mitigations
(Caller)
Stops standard Return-Oriented

Programming attacks

• •1 •1 • • • •

Branch-based ROP Mitigations
(Hardware Augmented)
Stops advanced Return-Oriented

Programming attacks

•

Structured Exception Handler
Overwrite Protection (SEHOP)

Stops abuse of the exception handler
• •2 •2

Import Address Table Filtering (IAF)
(Hardware Augmented)
Stops attackers that lookup API

addresses in the IAT

•
EA
F

EA
F+

Load Library
Prevents loading of libraries from UNC

paths
• • • •

Reflective DLL Injection
Prevents loading of a library from

memory into a host process
• •

1 32-bit ROP mitigation on WinExec() function only, not on 64-bit versions of Windows
2 Based on SEHOP functionality offered by Windows, available only in Windows Vista Service Pack 1 and
newer versions of Windows

Exploits Explained

So
ph

os

In
te

rc
ep

t X

ES
ET

En

dp
oi

nt
 S

ec
ur

ity

Ka
sp

er
sk

y
En

dp
oi

nt
 S

ec
ur

ity

M
cA

fe
e

En
dp

oi
nt

 S
ec

ur
ity

Sy

m
an

te
c

En
dp

oi
nt

 P
ro

te
ct

io
n

Tr
en

d
M

ic
ro

O

ffi
ce

Sc
an

W

eb
ro

ot

En
dp

oi
nt

 P
ro

te
ct

io
n

Cy
la

nc
eP

RO
TE

CT

M
ic

ro
so

ft
EM

ET

M
al

w
ar

eb
yt

es

An
ti-

Ex
pl

oi
t

Pa
lo

 A
lto

 N
et

w
or

ks

Tr
ap

s
Cr

ow
dS

tr
ik

e
Fa

lc
on

VBScript God Mode
Prevents abuse of VBScript in IE to

execute malicious code
• • • •1

WoW64
Stops attacks that address 64-bit

function from WoW64 process
•

Syscall
Stops attackers that attempt to bypass

security hooks
•

Hollow Process
Stops attacks that use legitimate

processes to hide hostile code
• •

DLL Hijacking
Gives priority to system libraries for

downloaded applications
•

Application Lockdown
Stops logic-flaw attacks that bypass

mitigations
• • •1

Java Lockdown

Prevents attacks that abuse Java to

launch Windows executables
• • •

Squiblydoo AppLocker Bypass

Prevents regsvr32 from running

remote scripts and code
• •

CVE-2013-5331 & CVE-2014-4113

via Metasploit
In-memory payloads: Meterpreter &

Mimikatz

• • • • •

1 Human defined restrictions based on folders & child processes; high-maintenance, not behavior-based

